Penerapanturunan fungsi trigonometri untuk menentukan. Contoh Soal Trigonometri Lengkap. penerapan konsep trigonometri dalam kegiatan sehari hari. 2018 - makalah penerapan matematika dalam kehidupan trigonometri merupakan alat utama ilmu bidang ekonomi menggunakan konsep fungsi untuk memprediksikan produksi'

PENERAPAN TURUNAN PARSIAL DI BIDANG EKONOMI April 8th, 2017 Pada post kali ini akan diberikan beberapa contoh bagaimana turunan parsial diterapkan dalam bidang ekonomi. Menentukan permintaan marjinal Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB­ adalah harga per unit produk B. Maka terdapat empat macam permintaan marjinal masing-masing produk terhadap harga, yaitu Contoh 1 Misalkan permintaan terhadap produk A dan produk B memenuhi persamaan berikut. Tentukan permintaan marjinal A terhadap harga per unit B dan permintaan marjinal B terhadap harga per unit A ketika harga per unit A Rp 0,5 dan harga per unit B Rp 1. Jawab qA = 200 pA-3pB-2 sehingga qB = 400 pA-1pB-3 sehingga Substitusikan pA = 0,5 dan pB = 1 ke dalam kedua turunan partial di atas, diperoleh Jadi, permintaan marjinal A terhadap harga per unit B adalah -50 unit/rupiah dan permintaan marjinal B terhadap harga per unit A adalah -100 unit/rupiah. Menentukan elastisitas permintaan parsial Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya, entah A dan B ini dua produk yang bersifat komplementer ataupun yang bersifat saling menggantikan substitusi. Misalkan persamaan permintaan A dan B masing-masing adalah qA = fpA,pB dan qB = fpA,pB, dengan pA adalah harga per unit produk A dan pB­ adalah harga per unit produk B. Elastisitas harga-permintaan dan elastisitas silang-permintaan masing-masing produk didefinisikan sebagai berikut. dengan ηA = elastisitas harga-permintaan produk A ηB = elastisitas harga-permintaan produk B ηAB = elastisitas silang-permintaan produk A terhadap harga produk B ηBA = elastisitas silang-permintaan produk B terhadap harga produk A Jika ηAB > 0 dan ηBA > 0 untuk pA dan pB tertentu maka kedua produk tersebut saling menggantikan. Jika ηAB 0, memeriksa tanda aljabar ηAB dan ηBA dapat dilakukan cukup dengan memeriksa tanda aljabar masing-masing turunan parsial. Perhatikan bahwa Karena kedua turunan parsial tersebut negatif, kita simpulkan A dan B bersifat komplementer. Tautan sementara Latihan Turunan Parsial Latihan Elastisitas Permintaan Latihan Penerapan Turunan Parsial di Bidang Ekonomi Tagging elastisitas harga, elastisitas permintaan, elastisitas silang, permintaan marjinalMost visitors also read Tinggalkan Balasan

Contohsoal penerapan matriks dalam ekonomi. Source: foto.modis.my.id. Selain itu penerapan konsep turunan juga banyak ditemukan dalam berbagai bidang seperti bidang biologi laju pertumbuhan organisme bidang kimia laju pemisahan bidang ekonomi keuntungan marjinal dan bidang fisika kepadatan kawat. Contoh soal penerapan limit dalam bidang ekonomi. 0% found this document useful 0 votes306 views9 pagesDescriptionPenggunaan turunan dalam ekonomiCopyright© © All Rights ReservedAvailable FormatsDOCX, PDF, TXT or read online from ScribdShare this documentDid you find this document useful?0% found this document useful 0 votes306 views9 pagesPenggunaan Turunan Dalam EkonomiJump to Page You are on page 1of 9 You're Reading a Free Preview Pages 5 to 8 are not shown in this preview. Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime.
Клетሳኡ ω гωИյεቪον չኹшι
ጶщоհо уյΑδեձፗδιξըз ωклሻψոкреտ
Ιщωሚеλудр еኜኂпрጬጴէчՕноβоφωλ λяքθ
ጌмሡфеղюኚኒф ецօΟդиξэ θ
Videoini berisi penjelasan tentang turunan sederhana dalam bidang ekonomi.#matematika #mathematics #math #maths #ekonomi #economics #economy #matematikaekon Guhisd ]uruhch & Guhisd Dhtnirca mch \nhnrcpchhyc mcacb Fdmchi Njohobd Guhisd ]uruhch mdgnrnhsdca ]uruhch ctcu mcacb bctnbcjc njohobd anfd` mdjnhca mnhich mdgnrnhsdca bnrupcjch suctu uhisd ychi mdicbfcrjch mnhich uhisd snfcicd fnrdjut ;y 2 xmy / mx 2 y— 2 —x^htuj bnhnrcpjch uhisd turuhch md ctcs jn mcacb bdjro njohobd, bcjc uhisd tnrsnfut mdjnbfchijchjn mcacb fnfnrcpc rubus-rubus mdgnrnhsdca snfcicd fnfnrcpc eohto` md fcwc` dhd ; 3. ]uruhch Guhisd Kdjc e mch h cmcac` chiiotc fdachich rnca, snfcicdbchc pnrscbcch fnrdjut ;y 2 ex 6 my / mx 2 e . h . x h-3 Eohto` ;c. y 2 x > my / mx 2 > x = f. y 2 xmy / mx 2 3e. y26x 5 my / mx 2 7x 6 6. ]uruhch suctu johstchtc Kdjc suctu johstchtc mdturuhjch bcjc scbc mnhich hoa my / mx 2 y2x 6 +35P+6my / mx 2 6x5x+6 + >. ]uruhch `csda fcid Kdjc y 2 x / ix bcjc my / mx 2 —x . ix ― x . i—x / ix 6 ctcuy 2 u / vmy / mx 2 vu— ― uv— / v 6 Eohto` ;y 2 6x 6 + x / x 5 + 5my / mx 2 x 5 + 5=x + 3-6x 6 + 35x 6 / x 5 +5 6 my / mx 2 -6x = ― 6x 5 + 36x +5 / x 5 + 5 6 6 7. ]uruhch fnrchtcd Kdjc y 2 x h bcjc my / mx 2 h . x h-3 . x Eohto` ;y 2 x 6 + 5x + 3 5 x 2 x 6 + 5x + 3 bcjc —x 2 6x + 5my / mx 2 5x 6 + 5x + 3 6 . 6x + 5ctcu iuhcjch rubus fnrdjut dhd,y 2 umy / mx 2 my / mu . mu / mxEohto` ;y 2 x 6 + 5 5 Bdscahyc, u 2 x 6 + 5, bcjcmu / mx 2 6xy 2 u 5 my / mu 2 5u 6 Kcmd, my / mx 2 5u 6 6xmy / mx 2 5x 6 + 5 6 6xGuhisd turuhch kuic mcpct mdjnbfchijch bnhkcmd fnfnrcpc rubus ychi acdh mdchtcrchyc snfcicd fnrdjut ; ― Guhisd Aoicrdtbc Fdcsc 2 aoi xmy / mx 2 3/x aoi 2 aoi umy / mx 2 3/u aoi n . mu / mxEctctch ;3< aoi n 2 3/n aoi 3< 2 3/ah3 ViewPenerapan Aplikasi Turunan MATHEMATIC 2012 at University of Brawijaya. Penerapan Aplikasi Turunan pada Ekonomi Setiap bidang ilmu mempunyai bahasa sendiri-sendiri. Tentu saja ini TURUNAN PARSIAL & MULTIVARIABEL DAN APLIKASINYA DALAM EKONOMI Proses penurunan sebuah fungsi yang merupakan penentuan limit suatu kuosien diferensi dalam pertambahan variable bebasnya sangat kecil atau mendekati nol disebut dengan Diferensiasi. Adapun hasil turunan yang diperoleh dari proses diferensiasi itulah yang disebut dengan derivatif y/x atau dy/dx. A. Kaidah diferensiasi Terdapat beberapa kaidah yang paling sering digunakan dalam pendiferensiasian, di antaranya 1. Diferensiasi konstanta k = konstanta Jika y = k Maka y′ = 0 contoh y = 4 turunan y′ = 0 2. Diferensiasi pangkat pangkat Jika y = xn maka y′ = nxn-1 contoh y = x5 turunan y′ = n. X n-1 y′ = 5 . x 5-1 y′ = 5x4 3. Diferensiasi perkalian Jika y = kv di mana v = hx , k = konstanta maka y′ = k . v′ contoh y = 2x5 k = 2 v = x5 maka v′ = 5x5-1 = 5x4 turunan y′ = k . v′ → y′ = 2 5x4 y′ = 10x4 4. Diferensiasi penjumlahan & pengurangan Penjumlahan fungsi Jika y = u + v di mana u = gx , v = hx maka y′ = u′ + v′ contoh y = 2x5 + x2 u = 2 x5 maka u′ = = 10x4 v = x2 maka v′ = 2x2-1 = 2x turunan y′ = u′ + v′ → y′ = 10x4 + 2x Pengurangan fungsi Jika y = u - v di mana u = gx , v = hx maka y′ = u′ - v′ contoh y = 2x5 - x2 u = 2 x5 maka u′ = = 10x4 v = x2 maka v′ = 2x2-1 = 2x turunan y′ = u′ - v′ → y′ = 10x4 - 2x B. Turunan dari turunan Contoh y = fx = 4x3 - 6x2 + 3x – 8 y′ = f′x = 12x2 - 6x + 3 y′′ = f′′x = 24x – 6 y′′′ = f′′′x = 24 yIV = fIVx = 0 C. Hubungan Antara Fungsi dan Turunannya 1. Titik Ekstrim Fungsi Parabolik Yang digunakan adalah turunan pertama y′ = f′x dan turunan kedua y′′ = f′′x. Turunan pertama digunakan untuk menentukan letak titik ekstrim. Jika f′x = 0 maka y = fx berada pada titik ekstrimnya. Turunan kedua digunakan untuk menentukan jenis titik ekstrimnya. Jika f′′x 0 maka titik ekstrimnya minimum dan kurvanya berbentuk parabola terbuka ke atas. Contoh Tentukan titik ekstrim dan koordinatnya dari fungsi y = 6x2 - 8x + 1! Penyelesaian y = 6x2 - 8x + 1 → f′x = 12x – 8 f′′x = 12 > 0 minimum-terbuka ke atas koordinat y′ = 0 → 12x – 8 = 0 → x = 8/12 = 0,67 x = 0,67 → y = 60,672 - 80,67 + 1 = -1,66 jadi, titik minimum kurva tersebut terdapat pada koordinat 0,67; -1,66 2. Titik Ekstrim dan Titik Belok Fungsi Kubik Yang digunakan adalah turunan pertama y′ = f′x dan turunan kedua y′′ = f′′x. Turunan pertama digunakan untuk menentukan letak titik ekstrim. Jika f′x = 0 maka y = fx berada pada titik ekstrimnya. Turunan kedua digunakan untuk menentukan jenis titik ekstrim dan letak titik beloknya. Jika f′′x 0 pada y′ = 0, maka titik ekstrimnya minimum. Jika y′′ = 0 maka y = fx berada pada titik beloknya. Contoh Tentukan titik ekstrim dan titik belok dari fungsi y = x3 - 5x2 + 3x - 5! Penyelesaian y = x3 - 5x2 + 3x – 5 → f′x = 3x2 – 10x + 3 f′′x = 6x – 10 syarat titik ekstrim y′ = 0 → 0 = 3x2 – 10x + 3 x1 = 3 x2 = 0,3 untuk x = x1 = 3 → y = x3 - 5x2 + 3x – 5 y = 33 – 532 + 33 – 5 = -14 y′′ = 6x – 10 y′′ = 63 – 10 = 8 8>0...minimum untuk x = x1 = 0,3 → y = x3 - 5x2 + 3x – 5 y = 0,33 – 50,32 + 30,3 – 5 = -4,5 y′′ = 6x – 10 y′′ = 60,3 – 10 = -8,2 -8,2 syarat titik belok y′′ = 0 → 0 = 6x – 10 x = 1,67 y = x3 - 5x2 + 3x – 5 y = 1,673 – 51,672 + 31,67 – 5 = -9,27 y′ = 3x2 – 10x + 3 y′ = 31,672 – 101,67 + 3 = -5,33 jadi, fungsi kubik tersebut berada pada titik minimum di koordinat 3,-14 dan titik maksimum pada koordinat 0,3;-4,5 serta titik belok pada koordinat 1,67;-9,27. D. Turunan Fungsi Multivariabel Prinsip dan kaidah turunannya sama dengan fungsi bervariabel bebas tunggal, hanya saja pada turunan fungsi multivariable ini akan ditemui turunan parsial turunan bagian demi bagian dan turunan total. Pada fungsi multivariable, karena variable bebasnya lebih dari satu macam maka turunan yang akan dihasilkan juga lebih dari satu macam. Bentuk umumnya Jika y = f x,y maka turunannya 1. Turunan y terhadap x → y / x 2. Turunan y terhadap z → y / z Sehingga 1. y = fx,z a. fx x,z =y′x = x′ b. fz x,z = y′z = z′ y′ = x′ + z′ 2. p = fq, r, s a. fq q, r, s = p′q = q′ b. fr q, r, s = p′r = r′ c. fs q, r, s = p′s = s′ p′ = q′ + r′ + s′ 3. y = fx,z fx x,z =y′x = x′ fz x,z = y′z = z′ y = fx =y′ = x′ z′ = y′x + y′z x′ Notes v y′x, y′z, p′q, p′r, dan p′s disebut turunan parsial. v y′ disebut turunan fungsi variabel tunggal v z′ disebut turunan total Contoh Carilah turunan parsial dan turunan total dari fungsi Z = fX,Y = 2X5 – 4Y + 10 dan Y = 2X + 3 Diketahui Z = fX,Y = 2X5 – 4Y + 10 Y = 2X + 3 Ditanya ZX….? ZY….? z′ ….? Penyelesaian v Turunan Parsial ZX = Z′x = 10X4 ZY = Z′y = -4 y′ = 2 v Turunan Total z′ = Z′x + Z′y y′ = 10X4 + -42 = 10X4 - 8 E. Penerapan Konsep Turunan Parsial 1 Variabel Dalam ekonomi 1. Elastisitas Bentuk umum η = Ey = lim = y′ . x Ex x→0 y Macam-macam elastisitas a Elastisitas Permintaan Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah barang yang diminta akibat adanya perubahan harga rasio antara persentase perubahan jumlah barang yang diminta terhadap persentase perubahan harga. Jika Qd = fP maka elastisitas permintaannya adalah ηd = %Qd = EQd = lim = Q′d . P %P EP P→0 Qd jika ηd > 1 maka elastik, jika ηd 1 ...... elastik jadi, dari kedudukan P = 20, harga akan naik turun sebesar 1% sehingga jumlah barang yang diminta akan berkurang bertambah sebanyak 2%. Catatan dalam elastisitas permintaan, untuk menentukan jenis elastisitas yang dibandingkan adalah angka hasil perhitungan sehingga tanda yang dihasilkan +/- dapat diabaikan karena tanda tersebut hanya mencerminkan hukum permintaan bahwa jumlah yang diminta bergerak berlawanan arah dengan harga. Fungsi permintaan juga sering dinotasikan dengan persamaan D = fP. b Elastisitas Penawaran Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah barang yang ditawarkan akibat adanya perubahan harga rasio antara persentase perubahan jumlah barang yang ditawarkan terhadap persentase perubahan harga. Jika Qs = fP maka elastisitas penawarannya adalah ηs = %Qs = EQs = lim = Q′s . P %P EP P→0 Qs jika ηs > 1 maka elastik, jika ηs 1 ...... elastik jadi, dari kedudukan P = 20, harga akan naik sebesar 1% sehingga jumlah barang yang ditawarkan akan bertambah sebanyak 2%. c Elastisitas Produksi Adalah suatu koefisien yang menjelaskan tentang besarnya perubahan jumlah keluaran output yang dihasilkan akibat adanya perubahan jumlah masukan input yang digunakan rasio antara persentase perubahan jumlah keluaran terhadap persentase perubahan jumlah masukan. Jika P = jumlah produk yang dihasilkan & X = jumlah faktor produksi yang digunakan, dan fungsi produksi P = fX maka elastisitas produksinya adalah ηp = %P = EP = lim = P′ . X %X EX X→0 P jika ηs > 1 maka elastik, jika ηs 1 berarti hubungan antara barang A dan barang B adalah kompetitif/substitutif saling menggantikan, di mana penurunan harga salah satu barang akan diikuti oleh kenaikan permintaan atas barang tersebut dan penurunan permintaan atas barang lainnya. Contoh Fungsi permintaan barang A terhadap barang komplementer ditunjukkan dengan persamaan QA = 2300 – 10PA + 5Ps + 0,4Y. Carilah elastisitas harga-permintaan, elastisitas silang-permintaan dan elastisitas penghasilan dari permintaan pada saat PA = 30, Ps = 10 dan Y = Diketahui Q = 2300 – 10PA + 5Ps + 0,4Y PA = 30 Ps = 10 Y = Ditanya εd….? εC….? εY….? Penyelesaian Q = 2300 – 10PA + 5Ps + 0,4Y Q = 2300 – 1030 + 510 + 0,45000 = 2300 – 300 + 50 + 2000 = Q = 2300 – 10PA + 5Ps + 0,4Y → P′A = -10 εd = Q′d . PA = -10 . 30 / = -10 0,007 = -0,07 in-elastis Q Q = 2300 – 10PA + 5Ps + 0,4Y → P′s = 5 εC = Q′s . Ps = 5 . 10 / 4050 = 5 0,002 = 0,01 in-elastis Q Q = 2300 – 10PA + 5Ps + 0,4Y → P′y = 0,4 εY = Y′ . Py = 0,4 . 5000 / 4050 = 0,4 1,23 = 0,49 in-elastis Q analisis ey = 0,49 0 sehingga membawa pengaruh positif terhadap barang A, di mana jumlah permintaan barang A dapat berkurang.
tentangaplikasi turunan dalam permasalahan analisis keuntungan Bagaimana pula dalam bidang ekonomi yang menginginkan hasil produksi tersebut baik, mempunyai laba dan 3) Penerapan data sesuai dengan pendekatan penelitian (Arikunto, 2002:209). Oleh karena itu, langkah-langkah analisis data yang telah diperoleh dari Perusahaan Istana Roti
Download Skip this Video Loading SlideShow in 5 Seconds.. APLIKASI TURUNAN DALAM EKONOMI DAN BISNIS PowerPoint Presentation APLIKASI TURUNAN DALAM EKONOMI DAN BISNIS. PENDAHULUAN. Turunan derivative membahas tentang tingkat perubahan suatu fungsi sehubungan dengan perubahan kecil dalam variabel bebas fungsi yang bersangkutan . Dengan turunan dapat pula disidik kedudukan-kedudukan khusus dari fungsi. Uploaded on Aug 30, 2014 Download PresentationAPLIKASI TURUNAN DALAM EKONOMI DAN BISNIS - - - - - - - - - - - - - - - - - - - - - - - - - - - E N D - - - - - - - - - - - - - - - - - - - - - - - - - - - Presentation Transcript APLIKASI TURUNAN DALAM EKONOMI DAN BISNISPENDAHULUAN • Turunan derivative membahastentangtingkatperubahansuatufungsisehubungandenganperubahankecildalamvariabelbebasfungsi yang bersangkutan. Denganturunandapat pula disidikkedudukan-kedudukankhususdarifungsi. Berdasarkanmanfaat-manfaatnyainilahkonsepturunanmenjadisalahsatualatanalisis yang sangatpentingdalamekonomidanbisnis. • Sebagaimanadiketahui, analisisdalamekonomidanbisnissangatakrabdenganmasalahperubahan, penentuantingkatmaksimumdantingkat konsepnilai marginal dankonsepoptimisasi. • Dalamkaitannyadengankonsepnilai marginal dannilaioptimisasi, akandibahaspenerapanturunandalampembentukanfungsiatauperhitungannilai marginal dariberbagaivariabelekonomi, sertapenentuannilai optimum darifungsiatauvariabel yang bersangkutan. KonsepDasar • Biaya Total Total Cost • Seluruhbiaya yang dikeluarkanuntukmenghasilkansejumlahbarang. • Biaya Total terdiridari • BiayaTetap Fixed Cost • Biaya yang besarnyatidakberubahsekalipunjumlahproduksiberubah. • BiayaVariabel Variable Cost • Biaya yang besarnyaberubah-ubahsesuaidenganjumlahproduksi yang dihasilkan. • Jadi TC = FC + VCFungsiBiaya Total mungkinberwujudsebagai • Fungsigarislurus • Biaya Total y = ax + b ; dimana a > 0 dan b ≥ 0 • Biaya rata-rata ŷ = y/x = a + b/x • Biaya Marginal y’ = dy/dx = a fungsikonstanta, artinya berapapunjumlahbarang yang diproduksi, biaya marginal tetapsebesar a • Biaya rata-rata marginal ŷ’ = dŷ/dx = -b/x2Fungsi parabola Kuadrat Y = ax2 + bx + c • Biaya Total y = ax2 + bx + c ; dimana a > 0, b ≥ 0 dan c ≥ 0 • Biaya rata-rata ỳ = y/x = ax + b + c/x • Biaya marginal ỳ = dy/dx = 2ax + b • Biaya rata-rata marginal ỳ’ = dỳ/dy = a – c/x2BiayaMarginal BiayaRata – Rata / Biaya Per Unit. • Tingkat perubahanbiaya total dikarenakanpertambahanproduksisebesar 1 satu unit. • Di dalamkalkulusistilah “marginal” artinyaturunanpertamadariBiaya Total. • Biayatotal dibagidenganjumlahbarang yang diproduksi / dijual. • Syaratuntukbiaya rata-rata minimum • ỳ’ = 0 • ỳ’’ = 0 Catatan Definisidiatasberlakudenganasumsibahwavariabel yang mempengaruhibiayaadalahvariabelkuantitasproduksi/penjualan x, sedangkanvariabellainnyadalamkeadaantidakberubah CaterisParibus.Didalamkonsepbiayainimeskipunberbagaibentukfungsidapatdibuatuntukperhitunganbiaya, akantetapi disini yang berlakuialah yang memenuhipembatasan-pembatasanekonomi, yaitu • Jikatidakadabarang yang diproduksi, makabiaya total total harusnaik/bertambahjika x bertambahsehinggabiaya marginal selalupositif. • Jika x produksibanyaksekali, makakurvabiaya total akanterbukakeatassehingga q’’ > 0CONTOH SOAL • Biaya yang diperlukanuntukmemproduksisuatubarangadalah 3 / unit dan FC = tentukan • Biaya Total sebagaijumlahbarang yang diproduksi. • Biaya Marginal, jikajumlahbarang yang diproduksiadalah 100 unit. • Biaya rata-rata, jikajumlahbarang yang diproduksiadalah 100 unit. • PENYELESAIAN • TC = FC + VC • = + 3x Rupiah • MC = Y’ = 3 • Biaya Rata-rata • Ỳ = Y/x = + 3x / x • = + 3 • Untuk x = 100 • Untuk ỳ = =18LATIHAN SOAL • Jikaharga/unit adalah P = 2x + 2 danbiayatetapadalah 18 dimana x adalahjumlahbarang yang diproduksi. Tentukanbiaya total danbiaya rata-rata minimumnya. • Fungsibiaya total dinyatakandenganpersamaany = x2 + 2x + 10, dimana x menyatakanjumlahbarang. Tentukanbiaya marginal danbiaya rata-rata MANDIRI 2 • Dikumpulkan paling lambat pada saat UAS. Pengumpulan lebih cepat akan diberi tambahan point. • Buat ringkasan dari buku “Aplikasi Matematika untuk Bisnis dan Manajemen” Penulis Haryadi Sarjono dan Lim Sanny; Penerbit Salemba Empat,; 2012-buku ini ada di koleksi perpustakaan STIE Dewantara halaman 158 – 203, kerjakan minimal 1 soal dari setiap Latihan! total ada 4 soal yang harus dikerjakan • Maksimal 10 halaman, DITULIS TANGAN
Padapost kali ini akan diberikan beberapa contoh bagaimana turunan parsial diterapkan dalam bidang ekonomi.. Menentukan permintaan marjinal. Misalkan A dan B merupakan dua buah produk yang memiliki hubungan satu sama lain dalam hal penggunaannya. Misalkan persamaan permintaan A dan B masing-masing adalah q A = f(p A,p B) dan q B = f(p A,p B), dengan p A adalah harga per unit produk A dan p B YZNtNE.
  • 49xtvjz1bs.pages.dev/239
  • 49xtvjz1bs.pages.dev/243
  • 49xtvjz1bs.pages.dev/163
  • 49xtvjz1bs.pages.dev/385
  • 49xtvjz1bs.pages.dev/491
  • 49xtvjz1bs.pages.dev/419
  • 49xtvjz1bs.pages.dev/438
  • 49xtvjz1bs.pages.dev/282
  • penerapan turunan dalam bidang ekonomi